Molecular Modeling Study for the Design of Novel Peroxisome Proliferator-Activated Receptor Gamma Agonists Using 3D-QSAR and Molecular Docking
نویسندگان
چکیده
Type 2 diabetes is becoming a global pandemic disease. As an important target for the generation and development of diabetes mellitus, peroxisome proliferator-activated receptor γ (PPARγ) has been widely studied. PPARγ agonists have been designed as potential anti-diabetic agents. The advanced development of PPARγ agonists represents a valuable research tool for diabetes therapy. To explore the structural requirements of PPARγ agonists, three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were performed on a series of N-benzylbenzamide derivatives employing comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and surflex-dock techniques. The generated models of CoMFA and CoMSIA exhibited a high cross-validation coefficient (q²) of 0.75 and 0.551, and a non-cross-validation coefficient (r²) of 0.958 and 0.912, respectively. The predictive ability of the models was validated using external validation with predictive factor (r²pred) of 0.722 and 0.682, respectively. These results indicate that the model has high statistical reliability and good predictive power. The probable binding modes of the best active compounds with PPARγ active site were analyzed, and the residues His323, Tyr473, Ser289 and Ser342 were found to have hydrogen bond interactions. Based on the analysis of molecular docking results, and the 3D contour maps generated from CoMFA and CoMSIA models, the key structural features of PPARγ agonists responsible for biological activity could be determined, and several new molecules, with potentially higher predicted activity, were designed thereafter. This work may provide valuable information in further optimization of N-benzylbenzamide derivatives as PPARγ agonists.
منابع مشابه
اثرایمونوتراپیوتیک آل- ترانس رتینوئیک اسید بر دیابت تیپ 1 در موش و تاثیر آن بر بیان ژن (peroxisome proliferator- activated receptor gamma (PPARγ
Background: All-trans retinoic acid (ATRA) has a variety of biological activities, including immunomodulatory action in a number of inflammatory and autoimmune diseases. The purpose of this study was to investigate the effects of all-trans retinoic acid on the treatment of autoimmune diabetes in mice and its effects on expressions of Peroxisome Proliferator-Activated Receptor gamma (PPARγ...
متن کاملMulti-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists.
Activation of the peroxisome proliferator-activated receptor γ (PPARγ) is important for the treatment of type 2 diabetes and obesity through the regulation of glucose metabolism and fatty acid accumulation. Hence, the discovery of novel PPARγ agonists is necessary to overcome these diseases. In this study, a newly developed approach, multi-conformation dynamic pharmacophore modeling (MCDPM), wa...
متن کاملRole of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract
Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...
متن کاملIdentification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone
The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug resea...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کامل